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Abstract In 1989, a watershed acidification experi-
ment was begun on the Fernow Experimental Forest
in West Virginia, USA. Ammonium sulfate fertilizer
(35.5 kg N ha−1 yr−1and 40.5 kg S ha−1 yr−1) was
applied to a forested watershed (WS3) that supported
a 20-year-old stand of eastern deciduous hardwoods.
Additions of N and S are approximately twice the
ambient deposition of nitrogen and sulfur in the
adjacent mature forested watershed (WS4), that serves
as the reference watershed for this study. Acidification
of stream water and soil solution was documented,
although the response was delayed, and acidification
processes appeared to be driven by nitrate rather than
sulfate. As a result of the acidification treatment,
nitrate solution concentrations increased below all soil
layers, whereas sulfate was retained by all soil layers
after only a few years of the fertilization treatments,
perhaps due to adsorption induced from decreasing
sulfate deposition. Based on soil solution monitoring,
depletion of calcium and magnesium was observed,
first from the upper soil horizons and later from the
lower soil horizons. Increased base cation concen-
trations in stream water also were documented and
linked closely with high solution levels of nitrate.

Significant changes in soil chemical properties were
not detected after 12 years of treatment, however.
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1 Introduction

In 1989, the Fernow Watershed Acidification Study
began when experimental additions of ammonium
sulfate first were made to a small forested watershed
(WS3). An adjacent forested watershed (WS4) con-
taining an older stand uncut since 1905, serves as a
reference watershed for stream water and soil water
chemistry. For vegetation comparisons, watershed 7
(WS7) is used because the stands began regrowth
at the same time, in the spring of 1970 (Table 1). The
original objective was to evaluate impacts of atmo-
spheric deposition on stream water and soil leachate
chemistry. Additional opportunistic research has
addressed the effects of acidification on soil chemis-
try, amphibian populations, tree and stand growth,
and nutrient cycling, among other topics. In this
manuscript, we highlight some of the major bio-
geochemical findings from the Fernow Watershed
Acidification Study, focusing on the processes of
acidification, nitrogen (N) saturation, and base cation
leaching.
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2 Site Description

The Fernow Experimental Forest (FEF; 39.03°N,
79.67°W) is in north-central West Virginia, in the
Allegheny Mountain section of the mixed mesophytic
forest, within the central Appalachian Mountains.
Prior to settlement, central Appalachian forests were
shaped by disturbances such as wind, fire, and
agricultural use, creating a diverse mosaic of forest
stands. Recently, several insects and diseases, most of
them non-native, have severely impacted Appalachian
forests, and acidic deposition and other air pollutants
represent a chronic disturbance (Adams, 1999).

Diversity is a hallmark of central Appalahcian
forests, such as the FEF, and the vegetation fits into
Core’s (1966) mixed central hardwood forests floristic
province. Madarish, Rodrigue, and Adams (2002)
lists more than 500 species of vascular flora found on
the FEF. Common tree species include yellow-poplar
(Liriodendron tulipifera L.), sugar maple (Acer
saccharum Marsh.), black cherry (Prunus serotina
Ehrh.), northern red oak (Quercus rubra L.) red maple
(A. rubrum L.), American beech (Fagus grandifolia
Ehrh.), and sweet birch (Betula lenta L.), although
their distribution is highly variable across the water-
sheds (Table 1).

The growing season on the FEF extends from
May through October, and the average length of the
frost free season is 145 days. Annual precipitation is
about evenly distributed between growing and
dormant seasons, averaging 145.8 cm. Precipitation
often occurs in the form of snow during the winter
but a snowpack usually does not exist for extended
periods. Average annual air temperature is 9.2°C

(Pan, Tajchman, & Kochenderfer, 1997), and mean
monthly temperatures range from −18°C in January to
20.6°C in July. Potential evapotranspiration on the
Fernow was estimated to be 56 cm/year (Patric &
Goswami, 1968).

The hydrometeorologic network of the Fernow is
described by Adams, Kochenderfer, Wood, Angradi,
and Edwards (1994). WS3, WS4, and WS7 are
instrumented with 120° V-notch weirs, with FW-1
water level recorders and 7-day strip charts to
measure streamflow continuously. Stream water grab
samples have been collected from WS3, WS4, and
WS7 on a weekly or bi-weekly basis since 1960. In
addition to grab sampling, stream water also was
sampled during storm runoff events using automatic
pumping samplers. Zero-tension pan lysimeters were
installed on WS3 and WS4 in 1988 to sample soil
water for chemical analyses. Stream and soil water
samples were analyzed at the USDA Forest Service
Timber and Watershed Laboratory in Parsons, West
Virginia, USA , using U.S. Environmental Protection
Agency protocols (Edwards & Wood, 1993).

2.1 Watershed Acidification Treatment

Ammonium sulfate fertilizer was applied to WS3 at a
rate that approximately doubled bulk deposition
inputs of N and S estimated from throughfall con-
centrations (Helvey & Kunkle, 1986). Applications
were made in spring, summer, and autumn (usually in
March, July, and November) to reflect seasonal
variability in deposition. Spring and autumn applica-
tion rates were 34 kg fertilizer ha−1 (7.1 kg N ha−1

and 8.1 kg S ha−1), respectively. Summer application

Table 1 Some characteristics of the study watersheds, Fernow Experimental Forest, West Virginia, USA

Characteristic WS3 WS4 WS7

Area (ha) 34 39 24
Aspect South Southeast East
Stand age (yrs) 34 95 34
Mean stand density (stems ha−1) 1,883 1,206 1,473
Mean stand biomass (mt ha−1) 203.4 310.7 157.5
Dominant tree species (% basal area) Black cherry (51.0) Sugar maple (1.3) Sugar maple (4.9)

Red maple (11.5) Red maple (8.9) Sweet birch (20.5)
American beech (2.5) American beech (6.5) Red maple (8.2)
Sweet birch (5.1) Northern red oak (29.8) Yellow-poplar (26.2)
Sugar maple (11.3) Sweet birch (3.6) Black cherry (20.5)

Stand parameters are based on the 1990 inventory for WS4, 2004 for WS3 and WS7.
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rates were 101 kg fertilizer ha−1 (21.3 kg N ha−1 and
24.4 kg S ha−1). All applications on WS3 during the
first 9 years were made by helicopter; beginning in
July 1998 all applications to WS3 have been made by
low flying fixed-wing aircraft equipped with a global
positioning swathing system to ensure accurate
coverage.

3 Results and Discussion

Application of ammonium sulfate fertilizer to WS3
during the Fernow Watershed Acidification Study has
resulted in significant changes to several watershed
parameters. Some of these effects were obvious and
were consistent with published models of ecosystem
acidification, N saturation and base cation cycling
(Aber et al., 1998; Galloway, Norton, & Church,
1983; Norton, Fernandez, Kahl, & Reinhardt, 2003;
Stoddard, 1994), while other effects were less so.

3.1 Acidification Processes

Fertilizer additions were effective in acidifying the
ecosystem on WS3, based on stream and soil solution
chemistry (Figs. 1 and 2). Additions of sulfate via the
fertilizer treatment increased leaching of sulfate in
stream water over time (Fig. 1). However, the sulfate
response was not as rapid nor as substantial as we had
hypothesized. Early in the experiment nitrate seemed
to be a more important driver of changes in stream
water chemistry. Sulfur retention by WS3 ranged
from 72 to 91% of that applied (calculated from
input–output budgets), and decreased slightly over
time, but this decline was observed on most of the
monitored watersheds on the FEF, not just WS3
(Adams, DeWalle, & Hom, 2006). Significant
declines in ambient sulfate deposition during the
course of the experiment (Lynch, Bowersox, &
Grimm, 2000) could partially explain these results,
as adsorption of sulfate is a partially reversible pro-
cess and concentration-dependent (Reuss & Johnson,
1986).

Baseflow stream pH on WS3 decreased approxi-
mately 0.8 pH units, from around 6.0 to about 5.2,
during the study (Fig. 1). Increased acidity on WS3
was statistically significant and resulted in WS3
baseflow moving from being only episodically acidic
to chronically acidic based on stream pH and acid

neutralizing capacity (ANC). A similar trend occurred
for peakflow (Edwards, Williard, Wood, & Sharpe,
2006). Significant decreases in soil solution pH also
indicate acidification (Fig. 2). However, soil chemical
parameters were much less responsive to the treat-
ments, and few significant differences in soil chemical
parameters were detected between WS3 and WS4 soil
chemistry, regardless of horizon sampled (Adams
et al., 2006). This lack of treatment effect can be
attributed at least partially to high spatial variability in
soil chemistry within the watersheds (Adams et al.,
2006; Gilliam,Yurish, & Adams, 2001; Peterjohn,
Adams, & Gilliam, 1996). Also, soil solution chem-
istry may not mirror bulk soil chemistry, as the soil
water collected in zero tension lysimeters reflects
channelized or macropore flow.

3.2 N Saturation

The fertilizer additions also affected N cycling on
WS3, and may have induced N saturation (Aber et al.,
1998; Peterjohn et al., 1996; Stoddard, 1994). The
added N rapidly resulted in increased stream water
nitrate concentrations (Fig. 1). Increased fluxes of
nitric oxide (NO) gas also were detected (Venterea et
al., 2004) in response to the treatment, along with
decreased resorption of N prior to leaf senescence
(May, Burdette, Gilliam, & Adams, 2005). Significant
increases in foliar N concentrations on WS3 relative
to WS7 were detected in 1992 for black cherry and
red maple, but differences were not significant in
2002 foliage samples (DeWalle et al., 2006). These
results provide some support for the idea of N sat-
uration of the forest on WS3.

However, there was a significant positive growth
response on WS3 plots dominated by black cherry
and yellow poplar (Fig. 3). Biomass and volume
growth on the treated WS3 exceeded that observed on
WS7 for the 14 year measurement period, suggesting
that N was limiting on WS3 for the entire measure-
ment period, which appears to be inconsistent with
models of N saturation (Aber et al., 1998; Stoddard,
1994). Other results also raise questions about the N
status of these watersheds. For example, the Aber et al.
(1998) model predicts that N mineralization will
initially increase then decrease, while net nitrification
increases. Yet despite additions of almost 500 kg ha−1

of N to WS3 between 1989 and 2003, no significant
differences in net N mineralization and nitrification
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rates could be detected between the watersheds, and
rates were consistently high (Gilliam et al., 2001).
Also, prior to initiation of the treatment, WS3 retained
approximately 55% of N inputs from deposition
(calculated from input–output budgets). Retention of
the added fertilizer N was about 90% initially after
fertilization treatments started (1990–1991), then

declined to around 70% with continued N additions
(2002). That N retention by a forest would increase
after additions of more N is contrary to current
understanding of N saturation.

Some of this lack of fit with N saturation
conceptual models may be due to a greater resistance
of hardwood/deciduous forests to N saturation relative
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Fig. 1 Flow-weighted
mean monthly stream water
concentrations of Ca, SO4,
NO3 and stream pH for
WS3 (solid line) and WS4
(dashed line), Fernow Ex-
perimental Forest, West
Virginia, USA. Vertical bar
represents start of the am-
monium sulfate fertilizer
additions to WS3
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to conifers. Larger pools of nutrients are cycled via
annual litterfall in deciduous systems, resulting in
different rates and processing of N. Research from
Bear Brook Watershed in Maine (Fernandez, Rustad,
Norton, Kahl, & Cosby, 2003) and elsewhere (Fenn
et al., 1998) provides at least some support for the
relatively greater sensitivity of conifer ecosystems
to N saturation and acidification. Also, the timing
of the fertilizer applications to WS3 may not be the

most opportune for plant uptake and growth
stimulation. In forest management applications, to
maximize growth response, fertilizer would normal-
ly be applied around bud break in the spring. Much
of the total N loading (43%) from both ambient
deposition and the fertilizer treatment occurred in
the 8-month period from September to May when
vegetation was mostly dormant. About 80% of the
nitrate was exported in stream water from the
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fertilized watershed between December and May.
Thus, the question arises whether WS3 is saturated
with N throughout the year, or is responding to
chronic N deposition and artificial N inputs by
leaching N during periods that do not coincide with
high biotic demands. Clearly, there is a need for an
improved understanding, both temporally and spa-
tially, of N dynamics and N saturation in temperate
deciduous forest ecosystems.

3.3 Base Cation Leaching

Evidence exists that the fertilization treatment has
affected the cycling of base cations, particularly
calcium (Ca), within WS3. Soil solution concentra-
tions of Ca and magnesium (Mg) increased during the
early years of treatment, and then decreased in the
later years of the study (Fig. 2). This pattern of base
cation increases and decreases also was evident in
stream water during peakflow, but was less obvious in
stream water concentrations at baseflow (Edwards
et al., 2006), although significant increases in stream
water baseflow concentrations and exports of base
cations were observed during the first few years of
treatment (Fig. 1), consistent with acidification
models (Fernandez et al., 2003; Galloway et al.,
1983; Norton & Fernandez, 1999; Norton et al.,
2003). This pattern can be interpreted as a cycle of

increasing base cation mobility, followed by depletion
of available base cations from the soil exchange sites
as hypothesized by Norton et al. (2003). Patterns of
tree ring chemistry and radial growth of some tree
species are approximately concurrent with the trends
of mobilization and depletion observed in the soil
water chemistry (Fig. 4). However, no significant
decreases in soil base cation concentrations or soil
base saturation were detected. Nor were any obvious
signs of tree decline (crown dieback, mortality.)
observed.

4 Conclusions

During the first 15 years of the Fernow Watershed
Acidification Study, much has been learned; the
processes of acidification, N saturation and base
cation leaching have been documented as a result of
the treatments. As treatment of WS3 has continued,
we have found that some conceptual models have
been useful in predicting responses, while others do
not seem to “fit” the deciduous hardwood forest
ecosystem of WS3. The central hardwood forest type
is one of the most widespread in the United States
(Adams, Burger, Jenkins, & Zelany, 2000), and
therefore we need to better understand the effects of
atmospheric deposition on these important forest
ecosystems. Continuation of the Fernow Watershed
Acidification Study will help address this need.
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